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Opening of a cyclopropane ring by electrophiles can in principle occur via an inversion 

or via a retention mechanism. It has been found that with the proton as electrophile the opening 

proceeds with retention of configuration in the case of 

With halogen as electrophilic agent both inversion* and 

on the substrate. 

bicyclobutanes' end cyclopropanols*. 

retention' have been observed, depending 

We wish to report an example of electrophilic addition of &drogen chloride to a 

Eyclopropane ring occurring via inversion of configuration at the carbon atom attacked initially*. 

Introduction of gaseous hydrogen chloride in a lo-204% solution of 1,2.3,4,5,6-hexametbyl-exo- - 

tricycle [4.1.0.0*'5]hept-3-ene41=in CH2C120r CHC13 at room temperature gives immsdiately a 

quantitative conversion to 1,2,3,4,5-m-,7-z-hexamethyl, 7-anti-chlorobicycld2.2.l~hept- 

* A few other examples of "end-on" protonation of a cyclopropene ring have recently been published3. 
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The StrWdLWe of compound 22 is assigned on the basis of the molecular weight, the NMR spectrum - 

- signals at 0.57 (dd, H-6-en), J(6-en-6-ex), 11.0, ~(6 en-5 ex)3.5 Hz), 0.67(d, 9-5, J 6.8 Hz), 

1.00(s, Ch3-1,4), 1.21 (s, C$-7), 1.53(s, CH3-2,3), l.gl(dd, H-6-ex, J(6 en-6 ex)ll.O, J(6 ex-5 ex) 

g (X=Cl) 

2 (x =OH) 

9.0 Hz) and,2.2 ppm(m, H-5) - end on the conversion of _2~ into 22 by chromatograp& of a solution 

of 22 in pentane/CH2C12 over moist A1203 or Si02. The NMR spectrum of compound 2 in chloro- 

form-signals at 0.56(dd, H-6-en, J(6 en-6 ex)10.7, J(6 en-5 ex)3.5 Hz), 0,70(d, 9-5, J 6.6 Hz), 

O.gO(s, CH3-7), 0.94 and 0.95(s, G-91,4), -1.2(7-OH), 1.56(s, C$-2,3), 1.83(dd. H-6-ex), 

J(6 en-6 ex)10.7, J(6 ex-5 ex)g.O Hz) end,2.0 ppm(m, H-5) - was also measured in the presence 

5 of tris(dipivalomethenato) europium complex , which facilitated the decoupling experiments for 

the methine end methylene protons. The configuration of endo-methyl and exo-proton at carbon 5 - 

in compounds '2~ and 2: is established by the following facts: (i) only one e-proton (high- 

field6 signal at 0.57(0.56) ppm) end two exo-protons (low-field signals at 1.91 and 2.2(1.83 - 

and 2.0) ppm)6 are present; 

(ii) the chemical shift enhancement in the spectrum of 2; on addition of Eu(DPM)3 which will be 

complexed to the oxygen lone-pair electrons 5b - is about twice as large for the multiplets at 

1.83 and 2.0 ppm as for the multiplet at 0.56 ppm, which is consistent with two exo end one - 

endo protons. Interestingly, the chemical shift enhancement is equally low for the 2,3-CH3 

and 5-e CH3 groups (being about half of that for the 1,4-C $ groups). which agrees with the 

anti-position of X towards the carbon-carbon double bond (if X were E to this bond, then 

complexing with Eu(DPM)3 would have resulted in a larger effect on the chemical shifts of the 

2,3-C~~ groups. Compare ref. 5b)j 



PO. J 

(Iii) addition of DC1 to 1 In CIY.X3 solution at room temperature gives compound 2: 

3 = 

which differs from compound 2~ in the following NMR signals: 0.56(d, J = 11.0 HZ), 0.69 

and 1.96 ppm (broadened d, J = 11.0 Hz), while no absorption at,2.2 ppm was found+. 

These results can be explained by the following inversion (at C-l) mechanism: 

(s) 

@Q -ATTACK AT C-l 
H2 

1,6 BOND BREAKING 

R 

20 R H 
= 

4 R 
= 

A retention (at C-l) mechanism would lead to the exo-isomer. 

* Depending on the experimental conditions , a partial H-D exchange between the nkhylene 

protons of compound 1 end DC1 was sometimes observed'. 
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A conceivable alternative retention (at C-l) mechanism that would still explain the formation 

of compound 2 

R 
R 

0 
Hz exe ATTACK AT C-l CHZ 

R 1,7 BOND BREAKING 

R 

can be excluded because it involves a highly unstable primary oyclobutylcarbonlum ion. It 

8 should be emphasized that also the following two processes : 

and proton addition at the carbon-carbon double bond 

do not occur to any measurable extent. 

The reason for the occurrence of the inversion mechanism In the cyclopropene ring- 

opening of compound 1 mey be a steric one. Molecular models indicate that there is more severe 

hindrance from the endo than from the exo side, which could explain the preference of a (quasi) - 
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ic\ 
linear transition state (intermediate) C --- C 

2\ 
-- H over a triangular one C -0- C 

8 
'\ /' 
H 

All attempts to generate the postulated intermediate ion 2 as a stable entity by 

protonation of 1 at low temperatures (to -100 "C) in superacids as FHSO3-S02ClF, FT%SO3-SbF5- 

SO2F2, HF-EJ?3 were unsuccessful. However, Cl' abstraction from gz by SbF5-SO2ClF (1:l v/v) 

or FHSO3-SbF5 (2:l v/v) at -70 "C readily afforded ion f, which was identified by its NMFi 

spectrum* (see ref. 9) 

At 0 'C ion 2 reacts quantitatively in about one hour to give ion 5, which is a cyclobutane 

ring-fused ubi-cation 
10 11 
. - The thermodynamic stability of (polymet~l)cyclopente~l cations 

is obviously so large that the inherent increase in strain by forming a fused cyclobutane ring 

is overcompensated. Very recently, a similar reaction of a protonated 7-norbornenone has been 

reported**. (see ref. 12). 

* Chemical shifts (in ppm) measured relative to internal tetremethyl snxnonium chloride and 

converted to 6m values by using &iW = -3.20 ppm for the reference ion. 

** 'Ihe unidentified compound obtainedgb on rearrangement of 7-methyl-7-norbornerl cation 

probably has also a oyclobutane ring-fused cyclopentelTy1 cation structure. 
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